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TRANSITION AND FLOW REATTACHMENT BEHIND AN APOLLO-LIKE 
BODY AT MACH NUMBERS TO 9 

By Robert L . Kruse 

Ames Research Center 

SUMMARY 

T r a n s i t i o n  from laminar to   t u rbu len t   f l ow i n  t h e  near wake of  a b l u f f  body 
has   been  s tudied i n  t h e  Ames Pres su r i zed  Bal l is t ic  Range.  The loca t ion   o f  
t r a n s i t i o n  and   the   rea t tachment   o f   the   separa ted   f low  have   been   de te rmined  
from  shadowgraphs  and  have  been  correlated on t h e   b a s i s   o f  Mach number, 
Reynolds  number,  and  angle  of  attack. The Mach numbers ranged  from 1 t o  9,  
t he  Reynolds  numbers (based on body diameter)  from 0 .  25x106, t o  5x106,  and t h e  
angles   of   a t tack  f rom 0" t o  25" .  

INTRODUCTION 

The flow  beyond the   co rne r s   o f   nea r ly   f l a t - f aced   en t ry   bod ie s   w i th  
convergent   af terbodies ,   such as t h e   A p o l l o ,   d e t e r m i n e s   t h e   h e a t   t r a n s f e r   t o  
the   a f te rbody.  I t  c a n ,   i n   p r i n c i p l e ,   b e   e i t h e r   s e p a r a t e d  from o r   a t t a c h e d   t o  
the   a f t e rbody ,  and   laminar   o r   tu rbulen t .  I f  s epa ra t ed ,  i t  may r e a t t a c h  some- 
where  along  the  convergent  afterbody  and  cause a loca l   peak   in   the   a f te rbody 
h e a t   t r a n s f e r .  Some of t h e  many v a r i a b l e s   a f f e c t i n g   t h i s   b e h a v i o r   a r e  Mach 
number,  Reynolds  number,  angle  of  attack,  surface  roughness,  corner  radius, 
mass i n j e c t i o n ,  and hea t   t r ans fe r .   The re  i s  no t h e o r e t i c a l   b a s i s   f o r  
p red ic t ing   t h i s   f l ow  behav io r .  

The problem  of  afterbody  f low  separation  and  reattachment i s  coupled   to  
the  problem  of   laminar- turbulent   t ransi t ion.  The sepa ra t ion   behav io r  i s  d i f -  
f e r e n t   f o r  laminar and turbulent  boundary  layers.   Furthermore,   the  behavior 
of the  boundary  layer as well as i t s  appea rance   a f t e r  i t  sepa ra t e s  from t h e  
f ron t - f ace   co rne r  is  evidence  of   the  condi t ion  of   the  boundary  layer  on t h e  
f ace ,  where it is  a l s o   i m p o r t a n t   t o   h e a t   t r a n s f e r .  Hence,  information on t h e  
boundary - l aye r   t r ans i t i on   ob ta ined   he re in  may a i d   i n   i n d i c a t i n g   c o n d i t i o n s   f o r  
which laminar  flow may b e   e x p e c t e d   t o   p e r s i s t   t o   t h e  edge   of   the   f ront   face .  

Experimental  observation  of  the  flow  over  the  afterbody  from  shadowgraphs 
( see ,   e .g . ,  r e f .  1)   has ,  i n  t he   pas t ,   been   pe rhaps   t he  most d e f i n i t i v e   t e c h -  
n ique   o f   de t e rmin ing   mode l s   o f   t he   f l ow  f i e ld   fo r   ca l cu la t ing   fu l l - s ca l e   hea t -  
i ng .  The p r e s e n t   i n v e s t i g a t i o n  was undertaken by t h i s   t e c h n i q u e   t o   e x t e n d  
the   i n fo rma t ion   ava i l ab le   t o   b roade r   r anges   o f  Reynolds  number, Mach number, 
and ang le   o f   a t t ack ,   and   t o   co r re l a t e   t he   f l ow  behav io r  i n  terms of   these  
parameters .  

The experiments  cover a range  of  Mach numbers  from 1 to 9 ,  Reynolds 
numbers based on free-stream p r o p e r t i e s   a n d   d i a m e t e r   f r o m   0 . 2 5 ~ 1 0 ~   t o   5 x 1 0 6 ,  
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ang les   o f   a t t ack  up t o  2 S 0 ,  and  model diameters  from 0.6 t o  3 cm. A p o r t i o n  
o f   t h e   d a t a   p r e s e n t e d  was taken  from  shadowgraphs  of  the same conf igu ra t ion  
obta ined  i n  the   i nves t iga t ions   o f   r e f e rences  1 and 2 .  

SYMBOLS 

d 

L 

L 
- 

M 

P 

r 

Rmd 

Re e 

R2d, R2x 

S 

X 

c1 

body diameter ,  cm 

a f t e r b o d y   s l a n t   l e n g t h ,  cm 

d i s t a n c e   t o   r e a t t a c h m e n t  a f t  of  model corner   a long   a f te rbody wind- 
ward  meridian, cm 

f ree - s t r eam Mach number 

f ree-s t ream s t a t i c  p res su re ,  atm 

r a d i u s ,  cm 

Reynolds  number  based on free-s t ream  condi t ions  and body diameter  

Reynolds  number  based  on  inviscid  f low  properties a t  boundary- 
layer   edge and  boundary-layer-momentum  thickness a t   f r o n t - f a c e  
corner  

Reynolds number based on flow  properties  downstream  of  the  normal 
p a r t   o f   t h e  bow-shock wave and  dimension d o r  x 

d i s t a n c e   t o   t r a n s i t i o n  a f t  of  model co rne r ,  windward o r  leeward 
meridian,  cm 

s t r eaml ine   d i s t ance  from s t a g n a t i o n   p o i n t   t o   c o r n e r  a t  junc t ion   of  
f r o n t   f a c e  and a f t e rbody   (See   f i g .  8.  The s t a g n a t i o n   p o i n t  was 
assumed t o  be  the  forwardmost  point on the  body.)  

angle   of  a t tack,  deg 

TEST DESCRIPTION 

Mode 1 

The conf igu ra t ion   u sed   i n   t he   i nves t iga t ion   ( f ig .   1 )   has  a s p h e r i c a l -  
segment face  with a r ad ius   o f   cu rva tu re   equa l   t o   t he   f ron ta l   d i ame te r ,  and a 
conica l   a f te rbody.  The models  were made of   so l id   phosphor   b ronze   o r  7075-T6 
aluminum,  and  had  diameters  of 1 cm and 3 cm, r e s p e c t i v e l y .  
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No s p e c i a l  care was t a k e n   i n   p o l i s h i n g   t h e   s u r f a c e s   o f  most  models.  The 
f r o n t  faces had   c i rcumferent ia l   sc ra tches   about  1 micron  deep,  caused  by  an 
emery p o l i s h  a f t e r  the  machining  operat ion.  One model, 3 cm in   d i ame te r ,   w i th  
t h e  face p o l i s h e d   t o  a surface  roughness   of   about  0.3 micron, was u s e d   t o  
check t h e   p o s s i b l e  effect  of   surface  roughness  on the  posi t ion  of   boundary-  
l a y e r   t r a n s i t i o n .  

Test Faci li t y  

The i n v e s t i g a t i o n  was conducted i n   t h e  Ames Pressur ized  Ballistic Range, 
a f a c i l i t y  6 2  meters  long  and  equipped  with 24 spark-shadowgraph  s ta t ions,  
e a c h   u t i l i z i n g  a c o n i c a l   p r o j e c t i o n   l i g h t   s y s t e m .  The f a c i l i t y   c a n   b e  
evacuated o r  p re s su r i zed .  The models were launched  from  smooth-bore  guns  into 
s t i l l  a i r  a t  v e l o c i t i e s  less t h a n   t h a t  a t  which r a d i a t i o n  from t h e i r   s h o c k  
l aye r s  would  fog  the  shadowgraph f i l m  (nominally 3 . 6  km/sec). 

The flow f i e ld   obse rved   i n   each  shadowgraph was s tud ied   t o   de t e rmine   t he  
s t a t e  of the   boundary   l ayer   in   the   near  wake, as well as how the  boundary- 
l aye r   s epa ra t ion  and   rea t tachment   charac te r i s t ics   were   a f fec ted  by angle  of 
a t t a c k ,  Reynolds  number,  and Mach number. S ince   t he  models dece lera ted   cons id-  
erably,   each tes t  y i e lded   r e su l t s   fo r   r anges   o f   f r ee - s t r eam Mach number and 
Reynolds  number. 

Boundary-Layer T r a n s i t i o n  and  Shadowgraph I n t e r p r e t a t i o n  

The condi t ion   o f   the   boundary   l ayer  on t h e  model f r o n t   f a c e  and i n   t h e  
sepa ra t ed   s t r eaml ine  downstream  of  the model co rne r s   can   u sua l ly   be   i n fe r r ed  
from the  shadowgraph. A d e t a i l e d   d i s c u s s i o n   o f   t h e   c r i t e r i a   u s e d   f o r   i n t e r -  
p r e t i n g   t h e  shadowgraphs  of t h i s   i n v e s t i g a t i o n  is  g iven   i n   t he   append ix .  

RESULTS AND DISCUSSION 

Discussion o f  Typical  Shadowgraphs 

The e f f e c t   o f  Reynolds number  on the   ex ten t   o f   l amina r   run  i s  i l l u s t r a t e d  
by f i g u r e  2 .  Figures  2(a)  and  (b) show t h e   e f f e c t   i n   t h e   s e p a r a t e d   f l o w  on 
the  leeward  meridian,   while  the  f low on t h e  windward meridian i s  l amina r   t o  
reat tachment .  (The f l i g h t   d i r e c t i o n  i s  n e a r l y   p a r a l l e l   t o   t h e   h o r i z o n t a l  
re fe rence   wi res   and   the  downwash and l a r g e - s c a l e  eddy fo rma t ion   i n   t he  wake 
can  be  seen.)  The e f f e c t  on flow en t i r e ly   s epa ra t ed   ove r   t he   a f t e rbody  i s  
s e e n   i n   f i g u r e s   2 ( c )  and ( d ) .  

The exp l i c i t   i n f luence   o f   ang le   o f   a t t ack  on t h e  wake flow is  shown i n  
f i g u r e  3.  The increase  in,  laminar  run  downstream  of  the  windward  corner  can 
be   seen ,   whi le   the   f low a f t  of   the  leeward  corner  was cons ide red   t u rbu len t   i n  
a l l  cases .  

3 



O p t i c a l   d i s t o r t i o n   o f   t h e  model p r o f i l e   r e s u l t i n g   f r o m   t h e   s t r o n g  
expans ion   f i e ld   nea r   t he  model co rne r  makes t h e  model corners   appear   cusped 

. ( s e e   f i g s .  2 (b)  and  (d)  and f i g .  3). T h i s   d i s t o r t i o n  was considered when 
t h e   d i s t a n c e   t o   t r a n s i t i o n  was measured  by  extending  the arc o f   t h e   f r o n t - f a c e  
p r o f i l e   t o   t h e   c o n i c a l - a f t e r b o d y   p r o f i l e   a n d   m e a s u r i n g  from t h i s   i n t e r s e c t i o n .  

Figure  3(d)  shows some unusual phenomena o b s e r v e d   i n   s e v e r a l   o f   t h e  
shadowgraphs. The waves l y i n g   p a r a l l e l   t o   a n d   b e t w e e n   t h e  model f r o n t  face 
and bow shock wave have  caused  considerable   speculat ion.  Waves o f   t h i s   t y p e  
have  been  observed i n   t h e   p a s t   ( r e f .  3) i n   f r e e - f l i g h t  tests of   b lunt   bodies  
f ly ing   th rough a countercur ren t   supersonic  airstream. This i s  t h e  f irst  
in s t ance  known t o   t h e   a u t h o r  when t h e s e  waves have  been  observed  in  a shadow- 
graph  of a f r e e - f l y i n g  model i n  s t i l l  a i r .  A poss ib le   cause  of t h e  waves i s  
u n s t e a d y   t r a n s i t i o n  from  laminar- to- turbulent   boundary  layer  on t h e  model 
face. The obl ique  body-f ixed waves  emanating  from  the  front  face are be l i eved  
t o   r e s u l t  from  supersonic  f low  over  surface  roughness.   These waves were 
obse rved   i n  a number of  shadowgraphs  and  begin t o   a p p e a r  a t  an  angular  
displacement   of   about  42' from t h e   s t a g n a t i o n   p o i n t   ( i . e . ,   c l o s e   t o   t h e   s o n i c  
po in t )  . 

I n  a few c a s e s ,   f u l l y   a t t a c h e d   f l o w  was noted  on the   a f t e rbody  a t  angles  
of   a t tack   near   zero ,  as shown i n   f i g u r e   4 ( a ) .  On a similar f l i g h t  a t  a 
s l igh t ly   l ower  Mach number and  Reynolds  number ( f ig .   4 (b ) ) ,   t he   a f t e rbody   f l ow 
was sepa ra t ed .  

The shadowgraphs  of  figures 2 ,  3,  and 4 i l l u s t r a t e   t h e   r e l a t i o n s h i p  
between the   a f te rbody  f low  and   the  t es t  v a r i a b l e s .  Some o rde r  is  s e e n   t o  
e x i s t  and much of   the   ensuing   d i scuss ion  i s  d e v o t e d   t o   d e s c r i b i n g   t h e   c o r r e l a -  
t i o n   o f   o b s e r v a t i o n s  from  shadowgraphs l i k e   t h e s e .  To limit t h e   i n v e s t i g a t i o n  
t o  a manageable  scope,  observations were r e s t r i c t e d   t o   t h e   p i t c h   p l a n e  of t h e  
conf igu ra t ion .  To minimize  crossflow  effects  only  those  shadowgraphs were 
used   fo r  which t h e   a n g l e   o f  yaw (normal to   t he   obse rva t ion   p l ane )  was less 
than  5'. 

Condi t ions   for  Flow Reattachment 

The f l i g h t   c o n d i t i o n s   ( a n g l e   o f  attack and Mach number) a t  which t h e r e  
was reattachment  of a separa ted   boundary   l ayer   on   the   a f te rbody windward 
meridian are shown i n   f i g u r e  5 for  each  combination  of model s i ze  and  range 
p res su re .  The open  symbols represent   separa ted   f low  and   the   f i l l ed   symbols  
represent   rea t tachment  somewhere a long   t he   a f t e rbody .  The flow was considered 
r ea t t ached  i f  i t  t u r n e d   s u f f i c i e n t l y   t o   p r o d u c e  a v i s i b l e  shock-wave  image 
a l o n g   t h e   a f t e r b o d y   ( s e e   f i g s .   2 ( a ) ,  2 ( b ) ,  3 (c) ,   and   3(d) ) .   In  a few cases  
the   s epa ra t ed   f l ow  appea red   t o   r ea t t ach   t o   t he  body  near  the  base  apex  without 
causing a reattachment  shock wave.  These cases have   been   i den t i f i ed   i n  
figure 6 as "marginal ly   a t tached."  (A spurious  double  image i n   f i g .   2 ( c ) ,  
due t o   l i g h t   r e f l e c t i n g  from t h e  shadowgraph spark   source ,  makes t h e   t r a i l i n g  
shock wave appea r   a l so  as a reattachment  shock wave on the   a f t e rbody  windward 
mer id ian .   Clear ly ,   however ,   in   th i s  case t h e r e  was no  reat tachment . )  The 
number a d j a c e n t   t o   e a c h   f i l l e d  symbol r ep resen t s   t he   pe rcen t   o f   t he   a f t e rbody  
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windward meridian  covered  by  reattached  f low. The re la t ionship   be tween  angle  
o f   a t t a c k ,  Mach number, and  percent   of   reat tached  f low  observed  a long  the 
windward meridian  can  be  seen.  A s t r a i g h t   l i n e  was f a i r e d   t h r o u g h   t h e   d a t a  
po in t s ,   d iv id ing   t hose   r ep resen t ing   s epa ra t ed   and   r ea t t ached   f l ow.   Th i s   l i ne ,  
which d iv ides   t he   da t a   r ea sonab ly  well, is common t o  a l l  p lo t s   and  shows t h a t  
i nc ip i en t   r ea t t achmen t  i s  independent  of  Reynolds number wi th in   t he   r ange  
covered. 

Fu r the r   s tudy   o f   t he   da t a   o f   f i gu re  5 i nd ica t ed   t ha t   r ea t t achmen t  may be  
inf luenced  by  whether   the  boundary  layer  i s  laminar   o r   tu rbulen t   immedia te ly  
downstream  of  the  corner (see, especial ly ,   the   high  Reynolds  number p o i n t s ,  
f i g .   5 ( d ) ) .   T h i s   l e d   t o   t h e   p l o t   i n   f i g u r e  6 which i n c l u d e s   t h e   d a t a   o f   f i g -  
u r e  5; each   da t a   po in t   fo r  which the  flow  downstream  of  the  windward  corner 
was t u r b u l e n t  is  ind ica ted   by  a flagged  symbol.   The  faired  l ine  from  figure 5 
is  a l so   i nc luded .   Ano the r   f a i r ed   l i ne  is  shown rep resen t ing   t he   cond i t ions  
fo r   r ea t t achmen t   o f   t u rbu len t   f l ow.  One po in t ,  a t  M = 7.6  and ct = 5.5" does 
not   agree   wi th   the   rea t tachment   curve .  I t  is p o s s i b l e   t h a t  Reynolds  number 
does  inf luence  reat tachment   through i t s  in f luence  on t r a n s i t i o n  a t  or   ahead  
of t he   co rne r .  But turbulent   f low on t h e   f a c e  i s  no t  a s u f f i c i e n t   c o n d i t i o n  , 

fo r   a t t ached   f l ow on the   a f t e rbody  a t  small angles   of  a t tack .  

A few observat ions  of   f low  reat tachment  were made on mer id ians   o ther   than  
t h e  windward m e r i d i a n   i n   o r d e r   t o   d e f i n e   t h e   b o u n d a r i e s   o f   r e a t t a c h e d   f l o w  on 
the  af terbody.   These are shown i n   f i g u r e  7 .  Half t h e  model a f t e rbody   su r f ace  
i s  shown as it  would appear i f  r o l l e d   o u t  on a p l ane   su r f ace .  The a r e a  
covered  by  reattached  f low is  enclosed by t h e  windward meridian  and  the  l ine 
f a i r ed   t h rough   t he   da t a   po in t s   fo r   each  Mach number  and angle-of-at tack  condi-  
t i o n   i l l u s t r a t e d .  For  a l l  cases ,   the   f low was laminar  downstream  of  the  wind- 
ward corner .  While i t  i s  n o t   p o s s i b l e   t o   e s t a b l i s h   a n   a c c u r a t e   t r e n d  from 
t h e  few cases  shown, the   locus   o f   rea t tachment  shows a reasonably  wel l -def ined 
p a t t e r n .  

Occurrence  of a Laminar or Turbulent   Separated Boundary  Layer 

The d a t a   i n   f i g u r e  8 are t h e   r e s u l t   o f  numerous  shadowgraph observa t ions  
i n  which t h e  Reynolds  number, R 2 X ,  i s  p l o t t e d   a g a i n s t  Mach number. Each d a t a  
po in t  is one  of a p a i r .  The angles   of  attack ranged   t o  25O. The f a i r e d  band 
divides   f low  condi t ions  for   which some laminar  flow  and  no  laminar  flow 
occurred  in  the  boundary-layer  downstream  of  the  corner.  Below a Mach number 
of about   1 .7  no separated  laminar   f low was observed. A s  t h e  Mach number 
increased  above  1 .7 ,   laminar   f low  appeared  in   the  separated  s t reamline a t  t h e  
lower  Reynolds  numbers. Between Mach numbers 2 and 9 ,  t he   l imi t ing   va lue   o f  
R Z X  f o r   l a m i n a r   f l o w   i n   t h e  wake appears  to  be  between  250,000  and 350,000. 
The mean value  of  300,000 w i l l  be   used when subsequent   reference is  made t o  
t h i s  limit. 

The f i l l e d  circles f lagged  a t  R 2 x  nea r  5x105  and M > 5 rep resen t  
observa t ions   o f   a t tached   a f te rbody  f low  near   zero   angle   o f  a t tack,  as shown 
i n   f i g u r e   4 ( a ) .   A t t a c h e d   f l o w   o f   t h i s   t y p e  is r e p o r t e d   i n   r e f e r e n c e  4 on a 



Mercury capsule  model with a roughened face. I t  was b e l i e v e d   t h a t   a t t a c h e d  
afterbody  flow was t h e  resul t  of   tu rbulen t   f low a t  high  Reynolds  numbers  on 
t h e  model face. Reattachment a t  the   h igh  Mach numbers is possibly  due,  i n  
p a r t ,   t o   h e a t   t r a n s f e r  which  causes   the  t ransi t ion  Reynolds  number t o   d e c r e a s e  
wi th   increas ing  Mach number ( d i s c u s s e d   i n  r e f .  5 ) .  The hea t - t ransfer   condi -  
t i o n s  were not   var ied   , independent ly   o f  Mach number and  Reynolds number. In 
t h e s e  tests t h e  model t empera tu re   r ema ins   subs t an t i a l ly   equa l   t o   t he  free- 
stream s t a t i c  temperature .  

T r a n s i t i o n   i n   t h e   S e p a r a t e d  Boundary  Layer 

A c o r r e l a t i o n   o f   t h e   d i s t a n c e  from t h e   s t a g n a t i o n   p o i n t   t o   t r a n s i t i o n  on 
the   s epa ra t ed   s t r eaml ine   w i th  Reynolds  number i s  p resen ted  i n  f i g u r e  9 .  The 
t o t a l   d i s t a n c e ,  x + s ,  i s  normal ized   wi th   respec t   to   the  model diameter .  
P r e s e n t i n g   t h e   d i s t a n c e   t o   t r a n s i t i o n   i n   t h i s  manner accounts   for   angle-of -  
at tack e f f e c t s ,   t h e   t o t a l   d i s t a n c e   t o   t r a n s i t i o n   b e i n g   t h e  same on  both  wind- 
ward  and  leeward  streamlines,   within  the  accuracy  of  measurement.   For  clari ty,  
on ly   the  windward va lues   o f   (x  + s ) / d   a r e  shown. Data near a Mach number of  
3 a r e  shown f o r   s e v e r a l   c o n d i t i o n s   o f  model s ize   and  ambient   pressure,   and  the 
curve is fa i red   th rough  the   da ta .  I t  i s  s e e n   t h a t   t h e   d i s t a n c e   t o   t r a n s i t i o n  
decreases  as R2d i n c r e a s e s .  Also shown for   comparison are d a t a   n e a r  Mach 
numbers o f '  4 and 8, a t  Rzd 0 . 3 7 ~ 1 0 ~ .  T h e s e   d a t a   i l l u s t r a t e  a phenomenon 

t h a t   a p p e a r e d   i n   t h e  Mach number range  from 2 t o  8.  The extent   of   laminar  
run   appeared   to   increase  as t h e  Mach number increased  f rom 2 t o  4, and t o  
decrease as t h e  Mach number Surther   increased  f rom 4 t o  8. The r e a s o n   f o r   t h i s  
i s  not  known. 

From t h e   a u x i l i a r y   p l o t   o f   x / d   v e r s u s  cy, i n s e t  i n  f i g u r e  9 ,  it is  seen  
t h a t  when cy = 0' , x/d = 0.52,  and s goes t o   z e r o  when R2d  = 0 . 7 ~ 1 0 ~ .  Then 

has a value  of  3.6x105, which  compares reasonably well w i t h   t h e   c r i t e r i o n  
determined  from  figure 8 fo r   t u rbu len t   f l ow downstream of  the   co rne r .   In  
f i g u r e  9 ,  w h i l e   t h e   d a t a   p o i n t s   r e p r e s e n t i n g   t h e   p o l i s h e d  model f a l l  nea r   t he  
upper   par t   o f   the   g roup   of   po in ts   near  Rzd = 1. 1x106,  no  appreciab1.e  increase 
in   length  of   laminar   run  due  to   reduced  roughness  i s  i n d i c a t e d .  

R 2 X  

P r o b a b i l i t y   o f   T r a n s i t i o n  on Model Face 

As n o t e d   e a r l i e r ,   t h e   c o n d i t i o n   o f   t h e   b o u n d a r y   l a y e r  on t h e   f a c e  
genera l ly   could   no t   be   observed   d i rec t ly .  However, the   in format ion   prev ious ly  
presented   sugges ts  a c r i t e r i o n   f o r   t h e   o n s e t   o f   t u r b u l e n c e  on t h e   f a c e .   I n  
f i g u r e  8, t h e  limit for  laminar  flow  downstream o f  t h e  model corner  was 

run downstream o f   t he  model corner   vanished when was nea r  3 ~ 1 0 ~ .  From 
these   observa t ions ,  it might   be  concluded  that   turbulent   f low  does  not   occur  
on t h e   f a c e  of  the  'body a t  Rzx < 3 ~ 1 0 ~ .  The va lue   o f  Re a t  t he   co rne r ,  

cor responding   to  R2x  = 3x105, v a r i e s  from 200 t o  250 o v e r   t h e  Mach n m b e r  

R2X 
= 3 ~ 1 0 ~ .  In   t he   d i scuss ion  of  f i g u r e  9 ,  i t  was shown tha t   t he   l amina r  

R 2 X  

e 
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range  covered  here .   This   value  compares   c losely  with  resul ts   of   other   exper-  
imental  work  on boundary - l aye r   t r ans i t i on  on b lunt   noses ,   for   example ,   re fe r -  
ence 5. The poss ib i l i t y   o f   t he   f l ow  unde rgo ing  a turbulen t - to- laminar  
t r a n s i t i o n  as a r e su l t   o f   expans ion  a t  the   co rne r  would  have some in f luence  
on th i s   conc lus ion .  However, the   ev idence   p resented   here   does   no t   appear   to  
support  such a p o s s i b i l i t y   ( s e e   a p p e n d i x ) .  

The curve shown i n  f igure   10   employs   the   c r i te r ion   of  R2x = 3x105 for 
the   onset   of   turbulent   f low  on  the  face.  The  Reynolds  number, R2d, a t  which 
RzX will j u s t   e q u a l  3 ~ 1 0 ~  a t  the  leeward  corner  i s  p l o t t e d   a g a i n s t   a n g l e   o f  
a t tack .   Turbulen t   f low  on   the   f ront   face  w i l l  occur f irst  along  the  leeward 
meridian.  The maximum value  of  R for   l aminar   f low on t h e   f a c e  is 5 . 7 ~ 1 0 ~  
a t  a = 0'. 

2d 

CONCLUDING REMARKS 
I 

An i n v e s t i g a t i o n  was conducted on an   Apo l lo - l ike   b lu f f  body to   de te rmine  
the   in f luence   o f   the   f l igh t   envi ronment  on the  boundary-layer   separat ion  and 
t r a n s i t i o n   c h a r a c t e r i s t i c s   i n   t h e   a f t e r b o d y   f l o w .  The fol lowing  t rends  and 
features  were  observed: 

1. With in   the   range   of   t es t   condi t ions ,   the   f low  separa t ion   and   rea t tach-  
ment behavior  on the   a f te rbody  were   found  to   be   sens i t ive   p r imar i ly   to  Mach 
number  and angle  o f  attack. There  appeared  to   be  no  effect   of   Reynolds  number 
in  the  laminar  f low  regime;  however,  a t  the  highest   Reynolds  numbers the  f low 
was turbulent   and showed at tached  af terbody  f low  even  a t  small angles  of 
a t t a c k .  

2 .  Laminar  flow in   the   separa ted   boundary   l ayer   occur red   be low a 
Reynolds  number  of  around 3x105 (based on the  f low  conditions  downstream  of 
the  normal  shock wave and  the  s t reamline  dis tance  f rom  the  s tagnat ion  point   to  
t he   f ron t - f ace   edge ) .  

3. The s t r e a m l i n e   d i s t a n c e   t o   t r a n s i t i o n   i n   t h e   s e p a r a t e d   a f t e r b o d y   f l o w ,  
measured  f rom  the  s tagnat ion  point ,   normalized  with  respect   to   the model  diam- 
e t e r ,  and p l o t t e d  as a func t ion   of   Reynolds   number ,   cor re la tes   a l l   the   da ta   o f  
t h i s   i n v e s t i g a t i o n  a t  a l l  ang le s   o f   a t t ack .   Th i s   d i s t ance ,  as expected, 
decreases  with  increasing  Reynolds  number,   based on normal-shock  conditions 
and  model diameter.  

Ames Research  Center ' 

National  Aeronautics  and  Space  Administration 
Moffe t t   F ie ld ,   Cal i forn ia ,   94035,  May 2, 1968 
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APPENDIX 

CRITERIA U S E D  FOR INTERPRETING SHADOWGRAPHS 

The e x i s t e n c e   o f  a laminar o r   t u rbu len t   boundary   l aye r  on t h e  face of a 
b l u f f  body a t  given free-stream condi t ions   has   been  a sub jec t   o f  some cpntro-  

' ver sy   i n   t he   pas t .   S ince   t he   mode l - f ace  image i n  shadowgraph may be  obscured 
by   t he   op t i ca l   d i s to r t ion   p roduced   by   t he  bow shock  wave,  the  boundary  layer 
on t h e  face usua l ly   cannot   be   observed   d i rec t ly .  I t  has  been  found (see refs .  
3 and 6) t h a t   c e r t a i n   f e a t u r e s  i n  shadowgraphs  indicate   turbulence on t h e  face 
of f l a t - f aced   bod ie s .   These   f ea tu re s   have   been   desc r ibed  as "f i laments   of  
l i g h t "  and are s e e n   i n   t h e  shadowgraphs as t h i n  streaks p r o j e c t i n g   i n t o   t h e  
model  shadow from t h e  model f r o n t - f a c e   p r o f i l e .  The f i l amen t s  are s o  f i n e  
t h a t   t h e y  do not   reproduce well i n   h a l f   t o n e s ;   f i g u r e  11, a h a l f - t o n e   p r i n t  
of a t y p i c a l  shadowgraph  from t h e   p r e s e n t   i n v e s t i g a t i o n ,   i n d i c a t e s   t h e i r  
presence . 

The ob jec t ives   o f   t h i s   append ix  are (1) t o   c o n f i r m   i n s o f a r  as p o s s i b l e  
t h e   v a l i d i t y   o f   f i l a m e n t s  as tu rbu lence   i nd ica to r s   and   (2 )   t o   u se  them i n -  
c o n j u n c t i o n   w i t h   v i s i b l e   f e a t u r e s   i n   t h e   s e p a r a t e d   f l o w   t o   d e v e l o p   c r i t e r i a  
f o r   d e t e r m i n i n g   b o u n d a r y - l a y e r   t r a n s i t i o n   i n   o r   a h e a d   o f   t h e   s e p a r a t e d  
boundary  layer. 

To accomplish  these  object ives ,   shadowgraphs  of   models   in   f l ight   with 
boundary - l aye r   t r i p s  on t h e   f a c e  were s t u d i e d .  The  models were 3 cm i n  diam- 
e t e r  and   had   th ree   types   o f   t r ips .  Type I was an   annular ,  V-shaped  groove  of 
60' included  angle ,   the   groove was 0.025 cm deep,  and w a s  p laced  midway 
between the   cen te r   and   co rne r .  Type I1 had  seven  concentr ic   grooves  of   the  
same geometry as type I ,  spaced a t  0.2-cm increments  from  the  center.  
Type 111 had No. 80  carborundum g r i t   u n i f o r m l y   d i s t r i b u t e d   o v e r   t h e   f a c e .  
The models were launched a t  a Mach number of  2 . 8  and a Reynolds  number, Rzd ,  
o f   e i t h e r  0 . 3 5  or 1.05   mi l l ion .  

The inf luence   o f   boundary- layer   t r ips  on the   separa ted   boundary   l ayer  
downstream  of t h e  model c o r n e r s   c a n   b e   s e e n   i n   f i g u r e  1 2 .  The shadowgraph o f  
a model with no boundary - l aye r   t r i p s   ( f i g .   12 (a ) )   has   no   f i l amen t s  of  l i g h t ,  
thus   ind ica t ing   the   boundary   l ayer  on t h e  model face i s  laminar.  The sepa- 
rated  boundary  layer  downstream o f  t h e  model corners  is  laminar  approximately 
one-half  model d iameter   a long   the  windward meridian  and  one-third model  diam- 
eter   a long  the  leeward  meridian,   and  appears  as a smooth  even l i n e .   I n   t h e  
inv i sc id   r eg ion  downstream  of t r a n s i t i o n ,   t h e r e  are unsteady waves c rea t ed  by 
edd ie s   i n   t he   t u rbu len t   boundary   l aye r .  Forward o f   t r a n s i t i o n  no  waves  can be  
seen  emanating  from  the  laminar  portion  of  the  separated  boundary  layer.  The 
region  between  the  laminar   port ion  of   the  separated  boundary  layer   and model 
a f t e rbody   p ro f i l e   appea r s  much l e s s   d i s t u r b e d   t h a n   t h a t   f a r t h e r  downstream 
over   the  af terbody.   This  i s  fu r the r   ev idence   o f  a laminar  separated  boundary 
l aye r .  
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The separa ted   boundary   l ayer  is a sharp ly   def ined  line downstream of t h e  
model c o r n e r s ,   p a r t l y   b e c a u s e   o f   t h e   d e n s i t y   p r o f i l e  of the mixing  layer .  
The l i g h t   r e f r a c t i o n  by the  mixing  layer   causes   underexposure  a long  the low- 
density  edge  ( the  outboard  edge)  and  overexposure  along  the  high-density  edge. 
(The  underexposed l i ne  a t  t h e  model i s  a d i f f r a c t i o n   f r i n g e . )   T h r e e -  . 

dimensional  eddies  would  cause a g ranu la r  image  and make t h e   d i s t i n c t  image 
appear   i r regular   o r   fuzzy .   Immedia te ly  a f t e r  the  expansion a t  a corner ,  
however, t h e   t u r b u l e n t   v e l o c i t i e s  are small compared t o   t h e   f l o w   v e l o c i t i e s ,  
and the   eddies   themselves   have   been   grea t ly   s t re tched   a long   the   loca l   f low 
d i r e c t i o n  s o  tha t   t he   p re sence   o f   t u rbu lence  is d i f f i c u l t   t o   d e t e c t   o p t i c a l l y ,  
s u g g e s t i n g   t h a t   i n   t h i s   f l o w   r e g i o n   t h e   o n s e t   o f   t u r b u l e n c e  i s  probably 
forward   of   the   po in t  a t  which it can first be  observed.  

For t h e  model w i t h   t y p e   1 , b o u n d a r y - l a y e r   t r i p   ( f i g .   1 2 ( b ) ) ,   t h e r e  were 
f i l amen t s   o f   l i gh t   nea r   t he   co rne r s   a long   t he   f ron t - f ace   p ro f i l e ;   bu t   t hey  
were  very  f ine  and somewhat d i f f i c u l t   t o   d e t e c t .  They indica te ,   however ,   tha t  
the   f low  near   the   corner  was not   laminar .   Turbulence  in   the  separated 
boundary- layer   p rof i le  i s  o b s e r v e d   f a r t h e r   u p s t r e a m   t h a n   t h a t   i n   f i g u r e   1 2 ( a ) .  
Unsteady  waves i n   t h e   i n v i s c i d   r e g i o n  are gene ra t ed   by   t h i s   t u rbu lence .  The 
edd ie s   i nboa rd   o f   t he   s epa ra t ed   boundary - l aye r   p ro f i l e   ex t end   v i r tua l ly   t o   t he  
co rne r ,   i nd ica t ing   t ha t   t he   f l ow i s  a t  least  t r a n s i t i o n a l   i n   t h i s   r e g i o n .  For 
the   f l ow  cond i t ions   o f   f i gu re   12 (b )   t r ans i t i on  may have  begun  ahead  of  the 
corner   and  cont inued  past   the   corner   even  in   the  presence  of   the  s t rong  local  
expans ion   f i e ld  a t  the   co rne r .  

L 

For  t h e  model w i th   t he   t ype  I1 t r i p ,   t h e   f i l a m e n t s   o f   l i g h t  were s t rong .  
There   a l so  were waves  from t h e   f r o n t  face that  a p p e a r e d   t o   f i l l   t h e   s u b s o n i c  
shock  layer  and  could  be a resonant   s tanding  wave sys tem  assoc ia ted   wi th   the  
boundary - l aye r   t r i p s .  The  waves in   themselves  do n o t   n e c e s s a r i l y   a s s u r e   t h e  
ex i s t ence   o f  a turbulen t   boundary   l ayer  on the   face   a l though it  i s  obvious 
tha t   t he   f l ow is  seve re ly   d i s tu rbed .  But the   f i l aments   o f   l igh t   were  more 
a p p a r e n t   i n   t h i s  shadowgraph  than i n   f i g u r e   1 2 ( b )  , and the  separated  boundary 
l a y e r  downstream of  the  corners  appears  completely  turbulent.   Unsteady waves 
i n   t h e   i n v i s c i d   r e g i o n  and tu rbu len t   edd ie s   i n   t he   i nboa rd   r eg ion   can   a l so   be  
seen as f a r  forward as the   co rne r .  The i n d i c a t i o n s  are t h a t   t r a n s i t i o n  was 
complete  ahead  of  the  corner.  

The model i n   f i g u r e   1 2 ( d )   h a d  a type  I1 t r i p   a l s o ;  however, t h e  Reynolds 
number was g r e a t e r  by a f a c t o r   o f  3 .  The f e a t u r e s   s e e n   i n   f i g u r e   1 2 ( c ) ,   t h a t  
i s  , waves  from t h e   f r o n t   f a c e ,   f i l a m e n t s   o f   l i g h t ,   t u r b u l e n t   e d d i e s   i n   t h e  
inboard  region,   unsteady waves i n   t h e   i n v i s c i d   r e g i o n ,  are more pronounced i n  
f i g u r e   1 2 ( d ) .  I t  i s  s i m i l a r l y   c o n c l u d e d   t h a t   t r a n s i t i o n  was complete  ahead 
o f   t he   co rne r .  

The f i laments   of   l ight   in   the  shadowgraphs  of   the  models   with type I11 
t r i p   ( f i g .   1 2 ( e ) )  were more heavi ly   concentrated  than  in   the  shadowgraphs  of  
the  other   models .  They were cont inuous   f rom  corner   to   corner ,   ind ica t ing   tha t  
a tu rbu len t   boundary   l aye r   v i r tua l ly   cove r s   t he   f ron t  face. Downstream o f   t h e  
upper   corner   the   separa ted   boundary   l ayer   appears   tu rbulen t .   There  are 
unsteady waves i n   t h e   i n v i s c i d   r e g i o n  and tu rbu len t   edd ie s  f i l l  the   inboard  
reg ion .  Downstream of   the   lower   corner   the   separa ted   boundary   l ayer   appears  
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laminar f o r  a ve ry   sho r t   d i s t ance .  The  absence  of  unsteady  waves  and  turbu- 
l en t   edd ie s   i n   t he   i nv i sc id   and   i nboa rd   r eg ions   i nd ica t e s  a t  most a b r i e f l y  
laminar  boundary  layer.  The d i f fe rences   be tween  the   upper   and   lower   p rof i les  
are poss ib ly   due   to   the   boundary   l ayer   be ing   th inner   a long   the   lower   mer id ian  
of   the  face. The separated  boundary  layer  downstream  of  the  corners i n  f i g -  
ure  12(b),  and  downstream  of  the  lower  corner i n  f igure  12(e) ,   appeared  lami-  
n a r   f o r  a short   d is tance  even  though  f i laments  of l i g h t   i n d i c a t e d  a tu rbu len t  
boundary  layer  ahead  of  the  corner.   Reference 7 shows t h a t  it i s  p o s s i b l e   f o r  
a rapid  expansion  to  make a turbulent   boundary  layer   temporar i ly   laminar .  The 
tu rbu len t  eddy v e l o c i t i e s  may be  made n e g l i g i b l e  by the  expansion.  If t h e  
Reynolds  number i s  low enough ( acco rd ing   t o   r e f .  7) , the   f low may remain 
laminar; i f  no t ,  it becomes t u r b u l e n t .  The l a t t e r  is  expec ted   t o   be   t he  
s i t u a t i o n  i n  t h e   p r e s e n t   t e s t s .  

From observa t ions   such   as   those   descr ibed   here ,   the   fo l lowing   c r i te r ia  
were  used  as a b a s i s   f o r   i n t e r p r e t i n g   t h e  shadowgraphs  of t h i s   i n v e s t i g a t i o n :  

1. Narrow f i l a m e n t s   o f   l i g h t   p r o j e c t e d   i n t o   t h e  model  shadow  from t h e  
f r o n t - f a c e   p r o f i l e   i n d i c a t e  a turbulent   boundary  layer .  

2 .  Unsteady  waves i n   t h e   i n v i s c i d .   r e g i o n  and  turbulence  eddies i n  t h e  
inboard  region  of   the wake i n d i c a t e  a turbulent   separated  boundary  layer .  
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(a) M = 2; a = 22 , Q = O.45x1O6, 0 

windward  RZx = 0. 39X105, 
leeward R2x = 2.93~10~. 

(c) M = 4; a = 8 0 , = 0.%106, 
windward  R2x = 1. 43xlO5, 
leewasd RZx = 2.42~10~. 

(b) M = 2; = 22 , 9 = 1.4x106, 
windward  R2x = 1. Oxlo’, 
leeward R2x = 8.39~10~. 

(d )  M = 4; a = 8 0 , = 2.7x106, AAA-169-3 

windward R2x = 4.15x105, 
leeward  R2x = 7 .11X105. 

Figure 2.- Effect  of  Reynolds  number  on  near-wake  flow. 



(a) a = 3' ( c )  a = 15' 

(b) a = 10 0 

Figure 3.- Effect  of angle of a t t ack  on near-wake flow; M = 2.2, = 1 . 5 ~ 1 0 ~ .  



(a) M = 8.75; & = 4.23~10~ 
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(b) M = 8.28; = 3.09X106 

Figure 4.- Attached and separated flow on afterbody; a M 0 . 0 
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Figure 5.- Flow on afterbody windward  meridian. 
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Figure 5.- Continued. 
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Figure 5. - Continued. 
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Figure 5. - Concluded. 
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Figure 6.- Flow conditions  and reattachment on afterbody windward meridian. 
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Figure 8. - Condition of flow downstream of model corner 
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Figure 9.- Extent of laminar flow in  separated  region  behind base. 
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Figure 11.- Indicator of turbulence on model f ront   face.  



A-40620 
(a) No t r i p ;  M = 2.8, RZd = 0.35~10~ 

Figure 12.- Flow field  around models with and without boundary-layer trips on the  face. 



(b) Type I trip; M = 2.8, Rza. = O.35X1O6 

Figure 12.- Continued. 
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(c )  Type I1 trip; M = 2.8, RZd = O.35X1O6 

Figure 12. - Continued. 
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( d )  Type I1 trip; M = 2.8, R2 = 1.05~10~ 

Figure 12. - Continued. 
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(e) Type I11 trip; M = 2.8, RZd = 0.35~10~ 

Figure 12. - Concluded. 
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